(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x)) → f(c(f(x)))
f(f(x)) → f(d(f(x)))
g(c(x)) → x
g(d(x)) → x
g(c(h(0))) → g(d(1))
g(c(1)) → g(d(h(0)))
g(h(x)) → g(x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g(h(x)) →+ g(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / h(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(x)) → f(c(f(x)))
f(f(x)) → f(d(f(x)))
g(c(x)) → x
g(d(x)) → x
g(c(h(0'))) → g(d(1'))
g(c(1')) → g(d(h(0')))
g(h(x)) → g(x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(f(x)) → f(c(f(x)))
f(f(x)) → f(d(f(x)))
g(c(x)) → x
g(d(x)) → x
g(c(h(0'))) → g(d(1'))
g(c(1')) → g(d(h(0')))
g(h(x)) → g(x)
Types:
f :: c:d:0':h:1' → c:d:0':h:1'
c :: c:d:0':h:1' → c:d:0':h:1'
d :: c:d:0':h:1' → c:d:0':h:1'
g :: c:d:0':h:1' → c:d:0':h:1'
h :: c:d:0':h:1' → c:d:0':h:1'
0' :: c:d:0':h:1'
1' :: c:d:0':h:1'
hole_c:d:0':h:1'1_0 :: c:d:0':h:1'
gen_c:d:0':h:1'2_0 :: Nat → c:d:0':h:1'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f, g
(8) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
c(
f(
x)))
f(
f(
x)) →
f(
d(
f(
x)))
g(
c(
x)) →
xg(
d(
x)) →
xg(
c(
h(
0'))) →
g(
d(
1'))
g(
c(
1')) →
g(
d(
h(
0')))
g(
h(
x)) →
g(
x)
Types:
f :: c:d:0':h:1' → c:d:0':h:1'
c :: c:d:0':h:1' → c:d:0':h:1'
d :: c:d:0':h:1' → c:d:0':h:1'
g :: c:d:0':h:1' → c:d:0':h:1'
h :: c:d:0':h:1' → c:d:0':h:1'
0' :: c:d:0':h:1'
1' :: c:d:0':h:1'
hole_c:d:0':h:1'1_0 :: c:d:0':h:1'
gen_c:d:0':h:1'2_0 :: Nat → c:d:0':h:1'
Generator Equations:
gen_c:d:0':h:1'2_0(0) ⇔ 1'
gen_c:d:0':h:1'2_0(+(x, 1)) ⇔ c(gen_c:d:0':h:1'2_0(x))
The following defined symbols remain to be analysed:
f, g
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(10) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
c(
f(
x)))
f(
f(
x)) →
f(
d(
f(
x)))
g(
c(
x)) →
xg(
d(
x)) →
xg(
c(
h(
0'))) →
g(
d(
1'))
g(
c(
1')) →
g(
d(
h(
0')))
g(
h(
x)) →
g(
x)
Types:
f :: c:d:0':h:1' → c:d:0':h:1'
c :: c:d:0':h:1' → c:d:0':h:1'
d :: c:d:0':h:1' → c:d:0':h:1'
g :: c:d:0':h:1' → c:d:0':h:1'
h :: c:d:0':h:1' → c:d:0':h:1'
0' :: c:d:0':h:1'
1' :: c:d:0':h:1'
hole_c:d:0':h:1'1_0 :: c:d:0':h:1'
gen_c:d:0':h:1'2_0 :: Nat → c:d:0':h:1'
Generator Equations:
gen_c:d:0':h:1'2_0(0) ⇔ 1'
gen_c:d:0':h:1'2_0(+(x, 1)) ⇔ c(gen_c:d:0':h:1'2_0(x))
The following defined symbols remain to be analysed:
g
(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(12) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
c(
f(
x)))
f(
f(
x)) →
f(
d(
f(
x)))
g(
c(
x)) →
xg(
d(
x)) →
xg(
c(
h(
0'))) →
g(
d(
1'))
g(
c(
1')) →
g(
d(
h(
0')))
g(
h(
x)) →
g(
x)
Types:
f :: c:d:0':h:1' → c:d:0':h:1'
c :: c:d:0':h:1' → c:d:0':h:1'
d :: c:d:0':h:1' → c:d:0':h:1'
g :: c:d:0':h:1' → c:d:0':h:1'
h :: c:d:0':h:1' → c:d:0':h:1'
0' :: c:d:0':h:1'
1' :: c:d:0':h:1'
hole_c:d:0':h:1'1_0 :: c:d:0':h:1'
gen_c:d:0':h:1'2_0 :: Nat → c:d:0':h:1'
Generator Equations:
gen_c:d:0':h:1'2_0(0) ⇔ 1'
gen_c:d:0':h:1'2_0(+(x, 1)) ⇔ c(gen_c:d:0':h:1'2_0(x))
No more defined symbols left to analyse.